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This paper is concerned with one-dimensional random fields consisting of randomly distributed identi-
cal light pulses which propagate in a linear dispersive medium. It is shown that such fields are necessari-
ly stationary and that their power spectra and their longitudinal coherence properties do not change on
propagation. The invariance of the power spectrum and of the coherence properties are shown to apply
more generally to any one-dimensional stationary field of any state of coherence, propagating in a linear
dispersive medium. Some invariance properties of nondiffracting partially coherent fields in dispersive
media and of partially coherent fields in lossless fibers are also discussed.
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I. INTRODUCTION

Propagation of light pulses in dispersive media has
been of interest for a long time. The first important con-
tribution to this subject was made by Brillouin and Som-
merfeld who, in two well-known papers published in
1914, clarified some basic questions relating to their ve-
locity of propagation [1-3]. Since the development of
lasers in the 1960s, light pulses of shorter and shorter
duration have been produced for a variety of applica-
tions. In spite of the numerous investigations concerning
pulses, some rather basic questions relating to their spec-
tral and coherence properties are still rather poorly un-
derstood. It is the aim of this paper to clarify some of
these questions.

This work was motivated by some unexpected results
found in interference experiments involving electron and
neutron beams [4-11]. Figure 1 shows a schematic dia-
gram of an experiment on longitudinal coherence length
of neutrons carried out by Kaiser, Werner, and George
[5]. A neutron beam was divided into two beams which
were then superposed. The visibility of interference
fringes was measured as a function of the thickness D of
the potential barrier, or, equivalently, as a function of the
relative delay between the two beams traveling through
the two paths I and II. Because the neutron wave pack-
ets in the original beam are statistically independent of
each other, the observed interference fringes are generat-
ed by interference of each wave packet with only itself.
Hence, if the relative delay introduced between the two
paths is longer than the duration of the neutron wave
packets, no interference fringes should be found. This
suggests that the longitudinal coherence time (or,
equivalently, the coherence length) of the neutron wave
packets is equal to their duration (or length). However,
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according to quantum mechanics, the neutron wave
packets spread as they propagate [12], i.e., their duration
and length increase on propagation. One might, there-
fore, assume that the coherence time and the coherence
length of the neutron wave packets will also increase as
they propagate. However, the experiment showed that
this is no so. It was found from the measurements of the
visibility of interference fringes that the longitudinal
coherence length of the neutron wave packets is equal to
their effective initial length, not to their (increased) length
after propagation [5]. This implies that the coherence
length remains unchanged, even though the wave packets
spread on propagation.

The first theoretical explanation of this result was pro-
vided by Klein, Opat, and Hamilton [13]. They also sug-
gested that, because of the well-known analogy between
the propagation of free particles in quantum mechanics
and that of classical light pulses in (linear) dispersive
media, similar results should hold for light pulses propa-
gating in dispersive media. However, there is an essential
difference between the two cases, not mentioned in the
paper by Klein, Opat, and Hamilton [13], namely, that
causality demands that a dispersive medium is necessarily
also absorbing. Nevertheless, under certain conditions,
i.e., when all the resonance frequencies of the medium are
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FIG. 1. Schematic diagram of an interference experiment
with neutron beams. (After Kaiser, Werner, and George [5].)
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far from the effective frequencies of the light field, ab-
sorption may be neglected and the medium then behaves
as a purely dispersive medium.

In this paper we first investigate one-dimensional prop-
agation, in a purely dispersive linear medium, of field
generated by sources which emit identical light pulses at
random instants of time, with a fixed average emission
rate, and we show that such fields are necessarily station-
ary and that their spectral and coherence properties do
not change on propagation. We then establish some oth-
er invariance properties of partially coherent
nondiffracting fields in dispersive media and of partially
coherent fields in lossless fibers.

II. PROPAGATION OF RANDOM LIGHT PULSES
IN DISPERSIVE MEDIA

Consider a source that emits identical light pulses
which then propagate along some specific direction, +z
say, in a linear dispersive medium. We assume that the
electric vector of each pulse is linearly polarized in a
direction specified by a unit vector e, which is perpendic-
ular to the z direction. We may represent the initial
shape of the pulse by the expression A(t)e,, where ¢
denotes the time and A(t) is localized in a short time in-
terval (—&¢ /2,8t /2). Suppose that the source is located
at z =0 and that the pulses are emitted at random in-
stants of time. Then the resulting fluctuating field may be
represented by an ensemble {V(z,t)e,}, each realization
of which at z =0 may be expressed in the form

Vo,0)=3 At —t;),
j

(2.1)

where the ¢;’s are randomly distributed.

Consider first the pulse field in a finite time interval
[—T/2,T/2]. Assuming that the probability of emission
of a pulse in a short time interval [z, + At ] is statistically
independent of earlier emissions and that it is proportion-
al to Az, it can be shown that the probability that exactly
N pulses are emitted in the interval [ — T /2,T /2] is given
by the Poisson distribution [14]

N

_N" ¥
p(N)= N1 & (2.2)
Here N is the average of N and is proportional to T:
N=qT, (2.3)

7 being the average pulse emission rate, assumed to be
constant.

If Vy(z,t)e, represents a realization of the subensemble
{Vn(z,t)ey} formed by all the realizations of the ensemble
{V(z,t)e,} that contain exactly N pulses, then at z =0

N
Vy(0,8)= 21 Alt—1t;) . (2.4)
i=

We may take Vy(z,¢) and A(?) to be the complex analyti-
cal signal representation [15,16] of the corresponding real
quantities. Then their Fourier representations contain
only non-negative frequencies:
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0= [ “Vy(z,0)e do, :
Vy(z,t) fo v(z,0)e © (2.5)
A= [ “Aw)e “do . (2.6)
[¢]
Evidently,
PRI Bt ot
Py(z0)=>- fmeN(z,t)e dt , 2.7
K(w)=—1~ A(t)e®tdt . (2.8)
27T — 0

Each realization Vy(z,0) satisfies the Helmholtz equa-
tion

2
& k2 | Pyzw=0, 2.9)
oz
where
k=k(w)=n(w)k, (2.10)

is the wave number in the dispersive medium, ky=w/c is
the free-space wave number associated with the frequen-
cy o (c being the speed of light in vacuum), and n(w) is
the refractive index of the medium, assumed to be real.
In order that n(w) is real, the effective frequencies of
A(®) must be far from any resonance of the medium.

One can readily show that the general solution to Eq.
(2.9) for propagation along the positive z direction is

Vy(z,0)= Ay(w)e™ @7 2.11)

where the Ay(w)’s are arbitrary. To determine the
An(w)’s for the present problem, we first substitute from
Eq. (2.11) into (2.5) and we find that

Vylz,t)= f0°° Ay(w)e!K@z=atlg g, (2.12)
On setting z =0 in this expression and making use of Eq.
(2.4), we find that
N - :
3 At =)= [ " Ayl do . (2.13)
j=1
Taking the Fourier transform of the above equation and
using Eq. (2.8), we obtain for 4y (w) the expression
N iwt,
Ay(w)= 3 Alwle 7 . (2.14)
ji=1
We have assumed here that ¢ << T, i.e., that the duration
of A(t) is much shorter than the time interval under con-
sideration, and that all pulses are contained within the
time interval [ —7/2,7/2]. On substituting from Eq.
(2.14) into (2.12), we find that

o N ~ iot, ik —
VN(z,t)Zf0 S Alw)e " Hellk@zotlgy, |
i=1

(2.15)

We have so far considered a single realization of the
ensemble {Vy(z,t)ey}. Suppose now that the emission
times #;’s of the pulses are statistically independent, i.e.,
that the joint probability density p(¢,,t,,...,ty) that N
pulses are emitted at the times t,,¢,, ...,y factorizes,
viz.,
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p(tl,tz,...,tN)=p(t1)p(t2)'"p(tN), (216)

where p (¢) is the probability density that a pulse is emit-
ted at the time . We also assume that p (¢) is uniform in
the time interval (—7/2,T /2), i.e., that

<V1v(z,z‘))=f_T/2 dn fT/Z dty fow X
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p(t)dt=dt/T . (2.17)

On using Eqgs. (2.15)-(2.17), the ensemble average
(denoted by angular brackets) of Vy(z,t) is found to be
given by the formula

tjeik(w)z—ia)tdw

2 T 2 T
__foo ~ _Sln 0)/];/2) eik(m)z—iwtdw . (2.18)
In a similar way, one finds that
—iot, +ie'
(Vizvy, )= [ 7 [ “dodoR*(0)A(e")e ~ k@ Hior ke i S (et (2.19)
jl=1
where
g < —imtj+iw'tl>= % (et( ]>+2 (e twt ( tm'tl)
Ji=1 j=1 j#l
_ N sin[(0'—w)T /2] + N(N —1) sinlfwT /2) sin(w'T/2) (2.20)
T (0'—w)/2 T2 ®/2 '/2 '
It is to be noted that these averages have been taken over the subensemble { Vy(z,t)ey}.
Next let us consider the complete ensemble { ¥ (z,t)e,}. The average of V' (z,t) is given by the expression
o 0 ~ sin(wT /2) ik(w)z—iwt
= = A —— | ¥F T g | (2.21)
(V(z,1) = P NPy(z0) [ " A o e ®
and the cross-correlation function of V' (z,¢) at two space-time points is given by the formula
Tz, t;2',t" ) =(V*(z,)V(z',t')) = 2 PN VR(z,t)Vy(z',t'))
SIN[(@0'— )T /2] x4, %/ iy —ik(o)z+iot, ikle)z —io't
= [ [ doda S EEL R (@) R @) TR o K
+{(V*(z,0)){V(z',1") , (2.22)
[
where Egs. (2.2) and (2. 18)—-(2.20) have been used. (V(z,t))=2m1qA0), (2.27)

Let us now proceed to the limit 7— . In this limit,

Sln((l)T/z) N (e)
YR 478 (w) , (2.23)
sin[(0'—w)T /2] .

(@ —o)/2 —2m8(0' —w) . (2.24)

The function 8'°(w) in the formula (2.23) is the even
half-8 function, defined by the two properties

8(w)=0 when w#0 (2.25)

and

when €>0 . (2.26)

2

[8w)do=1
0

On substituting from expressions {2.23) and (2.24) into
Egs. (2.21) and (2.22), we find that

0|~ . Vit
F(z,t;z’,t’)=2‘m7f |A(w)i2etk(w)(z z)—io(t ”dco
0

H(V*z,0))(V(z',t")) . (2.28)

It is seen that (¥ (zt)) is independent of ¢ and
I'(z,¢;z',t') depends on ¢t and ¢’ only through the
difference 7=(#'—t). These properties imply that the
field is statistically stationary, at least in the wide sense
[17,18]. Consequently, we can write I'(z,z,¢'—t) in
place of I'(z;¢;z’,¢’). The function I'(z,z’,t'—t) is the
one-dimensional form of the well-known mutual coher-
ence function of optical coherence theory [16,19]. On us-
ing Eq. (2.8), the expressions (2.27) and (2.28) become
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Vz0)=n[" Anar, (2.29)

[(z,2',7)=nCplz,2',7)+ [nfj’ F(O,t)dt]z, (2.30)

where
Crlzz', )= [ © FXz,0F (2, t+7)dt , 2.31)
with
F(z,0)= [ "Rlw)eF@:=etlg, (2.32)
0
It is clear that
F(0,1)=A(1) (2.33)

and that F(z,t) represents the shape of the pulse A(¢)
after the pulse has propagated in the dispersive medium
to z from z =0. The function Cg(z,z’,7) represents the
(deterministic) correlation of F(z,t) and F(z',t +7) and
we will, therefore, call it the single-pulse correlation func-
tion. Expressions (2.29) and (2.30) are analogous to the
well-known expressions encountered in the theory of the
shot noise, known as Campbell’s theorem [20-22].

Equation (2.30) expresses I'(z,z’,7) in terms of the
single-pulse correlation function Cg(z,z’,7). From Eq.
(2.32), it follows that as the pulse propagates in the
(linear) dispersive medium, it becomes broader, i.e., the
duration of F(z,t) increases with z, in general. Hence one
might expect that the single-pulse correlation function
Cp(z,z',7) of F(z,t) and F(z',t +7) as a function of 7 be-
comes broader when z and z’ increase [with (z'—z)
fixed]. This, however, is not so, because as can be shown
from Egs. (2.31) and (2.32)

Cplz,2',7)=Cp(0,2' —2z,7) . (2.34)

This result implies that the correlation between F(z,t)
and F(z',t+7) does not change on propagation [with
(z'—z) fixed]. This fact becomes perhaps clearer if one
considers the special case when z'=z. It follows from
Eq. (2.34) that Cg(z,z,7)=Cg(0,0,7), or on using Egs.
(2.31) and (2.33)

7 FYz0F(zt+ndt= [ 7 A* (DA +1)de,  (2.35)

showing that the quantity on the left-hand side does not
depend on z. Hence, if the relative delay 7 is greater than
the duration 8¢ of the initial pulse A(z), there will be no
correlation, even though F*(z,t) and F(z,t+7) may
overlap at z (Fig. 2), because the right-hand side of the
above equation vanishes. Now when z'=z, Eq. (2.30)
reduces to

I(z,2,7)=7Cp(0,0,7)+ [nf_‘” A(t)dtl2

=I(0,0,7) , (2.36)

showing that the self-coherence function I'(z,z,7) is in-
dependent of z.
It is also evident from Egs. (2.30) and (2.34) that

I(z,z',7)=TI(0,z'—2z,7), (2.37)
which, together with Eq. (2.29), implies that the field is
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FIG. 2. Evolution, in a dispersive medium, of the envelopes
of F(z,t) and F(z,t +7). Because of the spreading of the pulse
on propagation, F(z,t) and F(z,t+7) eventually overlap, al-
though they were well separated before propagation. v, denotes
the group velocity in the medium.

statistically homogeneous [23]. Therefore the second-
order coherence characteristics (more specifically, the
coherence time and the coherence length) of the pulse
field do not change on propagation. Moreover, the power
spectrum which, by the Wiener-Khintchine theorem
[24,25], is equal to the Fourier transform of the self-
coherence function I'(z,z,7), is found, on using Eq. (2.36),
to be given by the expression

S(z,0)=2m|A0)|>+1677*A%0)8'(w) .  (2.38)

This formula shows that the power spectrum of the field
is (i) invariant on propagation, even though the medium
is (purely) dispersive and (ii) proportional to the square of
the modulus of the Fourier spectrum of a single pulse, ex-
cept for an additive dc component.

We have demonstrated in this section the invariance,
on propagation, of the power spectrum and of the mutual
coherence function of a one-dimensional pulse field. Ac-
tually, the invariance is more general: it holds for any
one-dimensional wide-sense stationary field of any state of
coherence, propagating in any linear purely dispersive
medium. In fact, it has been shown [26] that the mutual
coherence function for a general one-dimensional wide-
sense stationary field is given by the expression

F(Z,Z’,T): fowso(a))ei[k(m)(z’—z)—wr]dw , (2.39)
where S(w) is the power spectrum of the field at the ori-
gin z =0. Since I'(z,z’,7) is seen to depend on z and z’
only through the difference (z’—z), such a field is neces-
sarily statistically homogeneous [27], even though the
medium is (purely) dispersive. Consequently, the (longi-
tudinal) second-order coherence properties of the field are
invariant on propagation. It is also clear from Eq. (2.39),
on taking z’'=z and using the Wiener-Khintchine
theorem, that
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S(z,w)=Sy(w) , (2.40)

implying that the power spectrum S (z,w) at any point z,
just as in the case of the pulse field, is independent of z,
i.e., it is invariant on propagation.

We have so far considered propagation in one dimen-
sion only. It is natural to ask whether the invariance of
the power spectrum and of the coherence properties of a
partially coherent field holds also in three dimension.
The answer is negative, in general, since as is well known
coherence properties of partially coherent light change
on propagation, a fact which follows, for example, from
the well-known van Cittert—Zernike theorem [28]. It has
also been demonstrated that, in general, the power spec-
trum changes on propagation, even in free space [29,30].
This fact is a consequence of rather subtle interference
effects in fluctuating wave fields. Roughly speaking, as a
result of interference, the spectral component of a partic-
ular frequency may have a maximum at some point in
space; on the other hand, the spectral component of a
different frequency may have a minimum there. The situ-
ation may be quite different at other points and, conse-
quently, the spectrum will, in general, be different at
different points in space. Nevertheless, light fields whose
power spectra and coherence properties do not change on
propagation are realizable under certain circumstances.
We will now consider some fields of this kind.

, o . k(w)
I‘(r,r,¢)=f0 dwe “‘”fo
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III. INVARIANCE PROPERTIES OF NONDIFFRACTING
PARTIALLY COHERENT FIELDS
IN DISPERSIVE MEDIA

Consider a nondiffracting partially coherent field,
propagating along the positive z direction in a linear
dispersive medium whose refractive index n(w) in the fre-
quency region of interest may be assumed to be real. The
cross-spectral density of the field can be expressed in the
form [31]

fk(“" df e i(z'—2)V k2(w)— f2

2w
x[ [ Td¢dg' 2 A(f.4,4"0)
Xef(x'cosp’ +y’ sing’)

. s
X e if(x cos¢p+y sing) ,

Wi(r,r',w)

(3.1)

where k(w) is again given by Eq. (2.10), r=(x,y,z),
r'=(x’,y’,z'), and the function A(f,d,¢’,w) character-
izes the angular correlation of the field at the frequency
®, at two azimuthal angles ¢ and ¢’, for a fixed f [32].
The mutual coherence function is given by the Fourier
transform of the cross-spectral density W(r,r',w), viz.,

dfei(z'—z)\/kz(w)—fzfoz'” fOZ”d¢d¢rf2A(f,¢’¢:’w)eif(x’cos¢'+y'sin¢’)e—if(x cosg+ysing)

(3.2)

We see that the mutual coherence function I'(r,1’,7) depends on z and z’ only through the difference (z’' —z ), which im-
plies that the field is statically homogeneous along the positive z direction. Consequently, as we will now show, the
power spectrum and the second-order coherence properties of the field will not change as the field propagates.

An expression for the power spectrum S(r, ) of the field is obtained at once by setting r'=r in Eq. (3.1):

k(w) T . , .
S(r,0)= fo ( dffzf f02 dé d¢,A(f’¢’¢"w)ezf[x(cos¢ —cosg)+y(sing’ —sing)]

(3.3)

Since the right-hand side is independent of z, the power spectrum is invariant along the positive z direction.
Next let us consider the longitudinal coherence properties of the field. The mutual coherence function of the field at
two points (x4,y0,2z) and (xg,y9,z +&) located on a line parallel to the z axis is, according to Eq. (3.2), given by the ex-

pression
F(XO?yoyz;xoyy07z+§;T)
szda)e—iw'rfk(w)df t§‘/k
0

ffz”f”ddsdqb Af, 6,80 ,

[xo(cos¢’ —cosg)+y,(sing’ —sing)]

(3.4)

which is seen to be independent of z. Hence the longitudinal second-order coherence properties do not change along

the positive z direction.

Finally let us consider the transverse coherence properties of the field. For two points in a plane, z=z, >0 say,

which is perpendicular to the z axis, Eq. (3.2) takes the form

dff2f021r folﬂd¢ d¢,A(f’¢’¢/’w)eif(x'cos¢’+y’sin¢')e —if(x cosp+y sing) , (3.5)

© _ k(w)
I‘(xxy)z();xlyy,)zO;T):fO da)e “m-fo

showing that T'(x,y,zg;x',y",2¢;7) is independent of z,.
This result implies that the transverse second-order
coherence properties of the field (i.e., the second-order
correlations of the field in any plane z=z;,=const) do not
change on propagation.

IV. PROPAGATION IN A FIBER

Let us now consider propagation of partially coherent
light in a fiber whose axis is along the z direction. We as-
sume that the fiber is lossless, and we denote by n(p,)
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[p=(x,y)] its (real) refractive index.

Usually a fluctuating field is represented by an ensem-
ble { ¥V (r,t)}, each realization V(r,t) of which may be re-
garded as a Cartesian component of the transverse elec-
tric field vector. For our purpose it is, however, more
convenient to carry out the analysis in the space-
frequency domain. The cross-spectral density of the field
may then be expressed in the form

W(r,r',0)={U*(r,0)U(r",0)), , 4.1)

where the U(r,w)’s are members of a suitably chosen sta-
tistical ensemble { U(r,w)e ~'®'} of monochromatic reali-
zations [33-36] of a Cartesian component of the trans-
verse electric field vector. The angular brackets, with a
subscript w, denote the average taken over this ensemble.
We have assumed here that the field is stationary, at least
in the wide sense. We further assume that the fiber is
semi-infinite and that the field propagates from the input
face z =0 into the region z > 0 containing the fiber. Each
realization U (r,w) may then be expressed in terms of the
modes of the fiber as [37]

iB,, (0)z

Ulr,0)=3 a,,(o)u,,(p,w)e , (4.2)
m

where the u, (p,w)’s are the orthonormal transverse
modes of the field in the fiber, the 3,,(w)’s are the propa-
gation constants of the modes, the a,,(®w)’s are random
variables, and r=(p,z). The single summation index m is
to be understood as representing collectively all the in-
dices which label a particular mode. The summation
symbol may denote either summation over the discrete
guided (propagation) modes or integration over a possible
continuum of radiation modes.

We will consider only the guided modes. The summa-
tion in Eq. (4.2) is then over such modes only and the
propagation constants are real and non-negative:

B, (0)>0.

On substituting from Eq. (4.2) into (4.1), we obtain the
following expression for the cross-spectral density of the
field in the fiber:

(4.3)

Wrr,w)=3 3 (an(®)a, (o)), urp,ou,(p,o)

e —iBm(w)z-O-iBm'(co)z'

X 4.4)

On taking the Fourier transform of this expression, we
find that the mutual coherence function of the field is
given by the formula

O(r,r',7)= fowdw 3 S (ar(wa,,(0)),

Xupy(p,0)u,, (p' o)

i[=B,(0)z+B, (0)2' — o]

Xe 4.5)

We see that the mutual coherence function I'(r,r’,7) de-
pends, in general, on both z and z’, not just on their
difference. This implies that a partially coherent field in
the fiber does not, in general, possess the invariance prop-
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erties of one-dimensional fields and of nondiffracting
fields which are discussed earlier. However, under cer-
tain conditions, a partially coherent light propagating in
the fiber will be statistically homogeneous along the axis
of the fiber, as we will now show.

Single-mode fibers

Suppose that all the effective frequencies of the light
are below the second-lowest cutoff frequency of the fiber.
Then only the fundamental mode of the fiber will be ex-
cited and Eq. (4.5) reduces to

Lrr,n=[" Wolp,p',we P T g0  4e)
where

Wolp,p' )= Ag(0)uf(p,0)uyp’, o), 4.7)
with

Ao(0)={(lag(w)]?), . (4.8)

The function u,(p,w) represents the fundamental mode,
with By(w) being its propagation constant. From Egs.
(4.6) and (4.7), it follows that the cross-spectral density of
the field in the fiber is given by the expression

]

—iBylw)z

W(r,r',0)=Ayo)ui(p,o)e

iBO(m)z’] )

X[uy(p',wle (4.9)

Because W(r,r',w) factorizes with respect to r and r’, the
field in the fiber is now completely spatially coherent at
each frequency [38]. However, it is not necessarily com-
pletely coherent in the space-time domain (cf. Ref. [39]).

We see from the expression (4.6) that I'(r,r’,7) depends
on z and z' only through the difference (z'—z). Hence
the field in the single-mode fiber is statistically homogene-
ous along the axis of the fiber. This result can readily be
shown to imply that the spectral and the second-order
longitudinal and transverse coherence properties of the
field are invariant on propagation along the fiber.

Incoherently excited multimode fibers

Let us now consider the situation when the transverse
modes in the fiber are incoherently excited, i.e, when the
different modes are uncorrelated. We then have [40]

(ap(@)a,(0),=A4,, ()8, , (4.10)

where §,,,,- is the Kronecker delta symbol. On substitut-
ing from Eq. (4.10) into Eq. (4.5), we obtain, for the mu-
tual coherence function, the expression

C(r,r',7)= fow do 3 A, (0)u)(p,ou,(p,o)

i[B,,(0)(z'—2z)— 1]

Xe 4.11)

We see that I'(r,r’,7) again depends on z and z’' only
through the difference (z’—z). Hence the field in an in-
coherently excited multimode fiber is statistically homo-
geneous along the axis of the fiber (the z axis). This result
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can readily be shown to imply that the power spectrum
and the second-order longitudinal and transverse coher-
ence properties of the field do not change on propagation
along the fiber.

V. CONCLUSIONS

We have shown that a one-dimensional field consisting
of random, independently emitted, identical pulses, prop-
agating in a purely dispersive medium, is statistically sta-
tionary, at least in the wide sense, and is statistically
homogeneous; and that the power spectrum and the lon-
gitudinal (second-order) coherence properties of the field
do not change on propagation. Its mutual coherence
function was found to be expressible in terms of the
single-pulse correlation function. Except for a dc com-
ponent, the power spectrum of the field was found to be
proportional to the square of the modulus of the Fourier
spectrum of a single pulse.

We have also considered the propagation of the
nondiffracting partially coherent field in purely dispersive
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media. We have shown that, the field is necessarily sta-
tistically homogeneous along its direction of propagation
and that its power spectrum and its longitudinal and
transverse (second-order) coherence properties are invari-
ant along that direction.

We have also studied a guided partially coherent field
propagating in a lossless optical fiber. We have shown
that when only the fundamental mode of the fiber is ex-
cited, or when all the relevant guided fiber modes are in-
coherently excited, the field in the fiber is statistically
homogeneous along the direction of the axis of the fiber
and that its power spectrum and its longitudinal and
transverse (second-order) coherence properties do not
change as the field propagates along the fiber.
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